NASA TT F-9078

\78

A NY1-71508
(ACCESSION NUMBER) - ﬂ/ W i/
Jméi (coDpE)

(NASA CR OR TMX OR AD NUMBER) (CATEGORY)

FACILITY FORM 602

RECENI' KESEAKCH ON 'THE THEORY OF BONDED JOINTS ™~

Olaf Volkersen

iy ity

Translation of "Neuere Untersuchungen zur Theorie
der Klebverbindungen."
Wissenschaftliche Gesellschaft fiir Luft- und
Raumfahrt, Cologne, pp. 1-28, 1963.

NATTONAL AFRONAUTICS AND SPACE ADMINTSTRATTON
WASHTNGTON AUGUST 1964



RECENT RESEARCH ON THE THEORY OF BONDED JOINTS
Olaf Volkersen

ABSTRACT l'}Cﬁ>X

Bonded overlap joints can be used for parts such as tor-
sion tube sheets that are subject to shearing stress, as well
as for tension-loaded parts. The stress distribution in the
bonding layer depends upon the properties of rigidity of the
sheets and of the adhesive. In the first part of these inves-
tigations the law of stress distribution for the shear-loaded
overlap is developed. In the second part, calculation is made
for the tension-loaded double-bonded joint with a formula de-
rived from earlier work in which limiting conditions are bet
ter accounted for than formerly.
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Section 1. TIntroduction

Stress distribution in the adhesive layers of bonded overlap joints
was first discussed by Arnovljevic (Ref. 1), 1909, with the assumption of
an adhesive elastic only with respect to shear, and later elaborated by
von Fillunger (Ref. 2) and by the author (Refs. 3, k4, 5), and applied
among other things to rivet Jjoints and plastic deformation. Goland and
Reissner (Ref. 6) in simple overlap bonding first considered the bending
moment in the bond and calculated the peel stresses in the adhesive.



All works heretofore known present an essential drawback; they neg-
lect limiting conditions on the load-free edges at the joint ends and
thereby arrive at a substantially erroneous evaluation of the level of
maximum peel stresses. The present work eliminates this defect by as-
sumption of variable normal stress over the thickness of the layer.

In contrast to the heretofore sole known problem of overlap bonding
of tension-loaded members, a strong solution is possible by simple means
for the distribution of adhesive stresses in shear-lcaded members. This
solution is discussed in the first part of the present paper. In the
second part the calculation of adhesive stresses for the tension-loaded
symmetrical double-bonded joint will be presented.

Section 2. Symbols

X4z = Coordinates
L = Total length of the overlap
Py A, = Sheet thickness
AL = Binder layer thickness
F . 2
: T2 = Related coordinates
L = Adhesive shearing stress
G = Limit value of the variable supplementary peel stress over
the layer thickness
Z; '21 = Shearing stresses in the sheets outside the overlap
?G:.EE , 6 = Normal stresses in the sheets outside the overlap
T = Median adhesive shearing stress 7T = G, A
m ™ /L
T = %E = Related stress
& = g}! = Related stress

= Related stress

&
e
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E ICT = Modulus of elasticity and modulus of shear of the sheet
EL ‘GL = Moduylus of elasticity and modulus of shear of the adhesive
é‘ = QOpposed displacement of the bond
?, f = Load increase fac{:br
mex | o

4, = Sheet thickness ratio

Wy
q¥ - AL = Related layer thickness for symmetrical Joint
L

A
G ot s s e s
@; = L = Coefficient of rigidity of the joint
S Gags,
@ _ G ¥ = Qoefficient of rigidity of the joint
EA,‘"AL

G = Normal tension in adhesives in the direction of the
& y-axis and in the middle fiber of the adhesive layer
' (peel stresses)

e . - Mmm;
3
w = (4+«ﬂ-§' g
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/"‘———\ﬁ‘l AL = ._%)_ + 5

L= Lg;vg_fa,
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Section 3. Shear-Loaded Overlap

In a shear-loaded Jjoint the bonded parts of the joint exchange
. shearing stresses. The torsion tubes illustrated in Figure 1 may serve
as a model. In the area of the overlap, the angle of slide ¥ of the
Joint parts decreases and the opposed displacement § of the two sheets
becomes unequal. If 50 indicates the displacement at the left end of



Figure 1. Shear-loaded overlap

the Jjoint and 62 the displacement at point z, there then results the
general equation of displacement:

(
gz —_— go — JL’};O{Z + Jé/:OLZ (1)
4



For the law of elasticity of the adhesive layer of thickness s. there

can then be written: : L
‘(r:
= = (2)
i yL CQ
or A
C - 22T
°: T G = (3)
Furthermore, for the joint parts:
=
C. A 4 ol
= = = - r — C - Z Iy
| Z:-g .
2
! —
T T B I
‘ }}i (- G.,Sz . Lz (5)
z=-¥

By substitution in equation 1 we obtain:

£ Z

- G, | B T dx - £
A ZLO TG | A, L de de r(z+%) (6)

z
P 4
Z='1§: Z=-£

and after twice repeated differentiation and normalization with:

Z Z
Z =
2z and (7)
there results the differential equation:
= Il - -
t = (,{.;w).@s. t — wf.Z‘. (8)
Therein
Y
Vo= = (9)
e



and (J— 2
5}55 = >t (10)
—m 6"151-/51_
With the general solution of the differential equation:
T = H4'C(/3’4 LJS'Z + F;;'fv'w\/jv\ OOS~Z (11)
and with limiting conditions
+4
1) T.dg = 4
i
| 2=-4
2
|
1
— |
2) £ oo
z:-% -s
there is finally obtained:
! A
= s 12
A, = 2 Ak G5 (12)
and \
| e d o A
g = LTS T, (13)

Thereby the problem is solved. The greatest adhesive shearing
stresses appear at the ends of the overlap. They attain a magnitude,
especially in symmetrical Joints with 5, = Sp, of':

T = 9otk = /@: i (1)
o 2 ¢ L \{1‘ CG’H\E

From equation (14) it is easily recognized that the load increase
factor.To in long overlaps, approximately at @Sj> 10, is adequately

expressed in the form:

fs

_ 5 _er (15)
to \f; ; i,'(?'/y/b,_v



In long overlaps, therefore, the load increase factor increases in
proportion to overlap length, i.e., the absolute value of the adhesive
stresses remains independent of it. If the maximum adhesive shearing
stress is derived not from the median shear stress, T but from the

shear stress, TBl’ present in the sheets, for long overlaps it can also

be written as:

c%{rf ‘

e 2 (4.6 4
R Ay (16)

Bl. 6 A

If this equation is reversed and divided on both sides by the
shearing strength of the sheet, the final quality value is:
’ _tf‘_f"‘ = EB ! iéé“ (16 )
T T I a
& s 881,

Accordingly, aside from the ratioc of strength of the adhesive to
sheet material, the final value of the bonded joint, i.e., the maximum
shearing stress transferable from one Jjoint part to the other depends
upon the ratio of the moduli of slide as well as the ratio of adhesive
layer thickness to sheet thickness. The optimal joint, therefore, re-
quires great strength, great layer thickness and slight adhesive
rigidity.

Section 4. Tension-Loaded Double-Bonded Joint
4.1 Without consideration of peel stresses in the adhesive

In disregarding the eccentricity of the shearing stresses with
respect to the outer sheets, the sliding of the adhesive layer of the

Joint in Figure 2 at point z can be expressé& as follows:

é; =4 - Ji J dz (17)
=-£ £

After substitution of the expressions for elongation of the bond as
in equation (3) in the preceding section, the following differential
equation is obtained:
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Figure 2. The tension-loaded overlap



T = (1) - T = O F (18)
Therein:
G2t
¢ - (19)
E-ar_
After introduction of the limiting conditions, for the symmetrical
. . 51
Joint with ¥ = 5 = 1:
T = o
- z~%§ (20)
: L2
. -~ z 41 . R
At the edge, with z = I == 5, the maximum value of shearing stress,

i.e., the load increase coefficient:

Fooe B ogdl W
t% = 3 ol % (21)

or with sufficiently long overlap:

S R N A
LE X —_—\JWSZIAL' (22)

This value of maximum shear stress at the end of the bond can again
be derived from the sheet stress and is then

(23)

(23a)
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4.2 With consideration of the peel stresses in the adhesive

In 4.1, for calculation of the adhesive stresses, only the shear
elasticity of the adhesive was taken into consideration. The eccentric
attack of the shearing forces on the outer bond was ignored. From the
eccentricity of the stress attack, however, as may be seen in Figure 2b,
the following equation of moments for a section in the middle adhesive

layer is obtained and therewith the equation for the bending line of the

outer bond:

Z 2
4 A 2 (/, ; E.Ad it
Mz = 3(/54/5,_3 Z'L~0f’z + jj 6{(-0[2.0{2 = =53 l;j( ©(2L)
z=-{ '7_=-g‘. 2=-¢

After introduction of an expression for the elastic deformation y
of the adhesive layer in the direction of peel stresses:

E, d

L

y = 2. @ (25)

and after normalization with

§ = gj (26)
GD
= _ T
T = =L 2
7 (27)
as well as introduction of the related variables
; z
2 = = 28
Z (28)
the differential equation for the peel stresses of the adhesive is
obtained:
<V E 2" < E 05 =1
Gy + A2 E2= -G = - ¢ (44 -~—-——'Z?‘ (29)
Exls, _ ( ’Vb) Ea-

A second equation, as in 4.1, is obtained from the shear deforma-
tion of the adhesive; after differentiation of equation 17 and with
respect to equation 3,
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! én
T, = ZL'(EZ“Q) (30)
Here, taking into consideration the bending component of the bond
s
elongations, and with WL = —%:
2 ; 2,2
' Gb 4 C—» A
_ s _ 4 , _ & |a r.d cdz d
€, 5 . r.de P ()| T A2+ (3”3 2 AL | o)
| 4 -£ e
2. 2 'i‘ 2
Z
4
jiz T Ea J\L;‘ dz (32)
-L
2

After introduction of elongation values in equation 30 and carrying

out the required differentiations as well as normalization, the differen-

tial equation of shear stresses of the adhesive is:

WA .Gk'ﬁd o~
L , = (- Gy
E Ak, c E&’4,

— 1l

T = (5+3%)

(33)

Fquations 29 and 33 are coupled. TFor solution it is advisable to
solve equation 29 for 7' and to introduce it into equation 33. There is
thus obtained a homogeneous equation 6. Ordering for ¢ can be performed
without special difficulty. Thereafter, the inhomogeneous equation 33
can be solved for T also.

The formula corresponds fairly well with that of Goland and Relssner
(Ref. 6) for the simple overlap method. The complete calculation is not
presented here because the same problem is treated in the following sec-
tion with an elaborated formula.

4.3 Variable peel stresses, also in transverse direction

With the assumption, as in 4.2, of invariable peel stresses over the
thickness of the adhesive layer used also by Goland and Reissner (Ref. 6)
in their work on simple overlap bonding, these median values are calcu-
lated with falr accuracy, but there is no information concerning the true
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maximum value of the peel stresses. Furthermore, the equation does not
satisfy the elementary condition of equilibrium:

%-? = %%; (3%)
a

If, on the contrary; the assumption is made that the peel stresses alter
linearly over the layer thickness, then equation 3%, as well as the equi-
librium of moments in horizontal sections is satisfied, and the shear
stresses can disappear at the load-free edges of the bonded layer at the
ends of the Joint.

The peel stress in the center of the adhesive layer, i.e., in its
neutral fibers, is now designated vy, while at the upper and lower edge

of the adhesive layer, on the contrary, it is designated ay_i [

corresponding to Figure 2b and c. Hence, equation 34 can be written:

o) = é:.. ?:l (35)
2

AN L

Since the shear stresses must disappear at the bond ends, the op-
posed displacement of the bond here actually reaches its maximum value
and the deformation of the adhesive layer from normal stress components
o, can no longer be ignored. According to Figure 2c, the elongations

as a result of ¢, in the lower half of the adhesive layer yield the

deformation value:

e
! A
‘ 4* 2 s
g E, A ¥ E
y:o 3:0
Deformation value 3 changes proportionally to the change of 0., and there

is obtained the apparent angle of slide:

_ _d A de 4 !
) k== - = - Tt ™ = e s G;
&2 d; 3 LE dz LE, (57)

With equation 35 there will then be /10
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A (38)
8 SE

If in addition the angle of slide is calculated from the stress deforma-
tion

g (39)

[~

and thus the opposed displacement of the bond can be expressed as

2
peppns 3 Ben] e

After differentiation and equalization of equations 17 and 40 there
is obtained

P AL G G,
‘Z‘L g E Z:L - ZL‘(21-24) (41)

Therein el and 62 are the elongations of the bond at the edge of the

adhesive described in equations 31 and 32. After introduction of these
equations and execution of two further differentiations, as well as nor-
malization according to equations 26 to 28, the differential equatlon
for the adhesive shearing stresses is obtalned'

£V - ¢

E“E < i E ,e‘f - E. Z(’
6/52 c LfOUJrOGQP) E/ML =k E/a‘/o:‘

- Fuz)

In addition, the differential equation 29 derived in section 4.2 again
appears for the peel stresses.

Now equation 29 is solved for 7', further differentiated and intro-
duced into equation 42, Thereby, finally, the following homogeneous
equation for ¢ is developed:

_ g w B v
6VIu _ g.r.._ﬂ Nad - Ho(_/(+0(,’\f‘_+o3'\'}"_\> Easd -G (43)

E}.ﬁé’ il E.Z ) — 0
'%'E-(,.,Sl.,sf_‘g + Ag2. (Exs/s
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The solution of this differential equation, with consideration of only {ll
the antisymmetrical members, is

Covib 13 5 Eonid 3+ Coninkdiiand ¢ € abhininld

.:Q§ —
ith " (1)
WL -
2
A= Ve 68 (45)
2 E'/S'ISL
S Eg
1?_ = |8 C;-/‘sf (L6)

(47)

In the solution of the characteristic equations related to equation
The minor

43 only the members most important for the result were used.
expressions relating to the temporary principal member were disregarded.

For determination of the integration constants of equation 44 the
following limiting conditions are obtained:

1) With the assumption that the bonds outside the joint are free
of bending moments, from equation 2k:

Y
4 f
GRS A “@idz.d% =0
‘f;‘f

or after normalization

(12 (48)
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2). For T = %, the bending moment in the outer bond equals zero and

thereby y" = 0, and because of equation 25 also

G. = o (49)

7.4
z‘z

3) By differentiation of equation 24 there is obtained

i
%(4“;1).2“ " f@;da = . %-_2:53‘ 3111

1

However, since in place of Z = - 5 the shear stress T, = 0 and the /12
o}
integral of the left side disappears, y'” = 0 must also be obtained,
and thereby ¢ "' = 0. Also at % = +%:
= _
5.4 ° (50)
4) From equation Ll after introduction of equations 31 and 32 at
T = - =:
= -3t -
le _ ,gL‘Gi e - _ G c,
L gEL A ,5'_ £

Because of the antisymmetrical structure of_ the solution for o the
sign of the right side must be reversed at z = +§. Then, at this point

after introduction of equation 29 and after normalization
Y - B - G = A (4L o
— . . N 3 - ‘é‘ ,\H_l 2 Ta
After introduction of the limiting conditions the following schema

of equations for determination of the four integration constants C of
equation 44 are obtained
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(
(
A,, = A }ili‘(cd_&s-em 313 + MZ;;W%) — L eak ds i %3}

/f“:'i 212 813 21y ¢, &5

| 221 :22 Zza 24, 22 _ g (52)
| 831 Bsp Bzz Agy 3 -

l2g1 240 243 ey Cy

%15

Therein for coefficients aik the following equations are valid:

44 ,l.

T R (53.1)

QL@ = I% YAS(M%_&W%% - eﬁl"%_;"f@%3> ¢ Loud ke %3}

2
3L
- /("”\‘1’1._ A 2
Lis 2 [I>
113
( _ A X L /
iQu - 1'(1":) hal)
, v (53.2)
_ A 1
%y =X (ii)'wﬁ
Q.,;s = 8@.)»\%3'W):.3
Lamf = f\/\-/w[«’%-‘ &/3%;3



AN

- — i &43, )1
a, = % (23> eak &
o AN ean) A
by < E{-‘f’;} el (53.3)
< hgy = E(\J\%s 8@%3 — M%:s %«}3
&3 = Palldi.oenis — Ak 23 o s
~ # -
s
- o A
a,, = L w1
= W }_?—
%, L :;
s )L e (53.4)
L &y, = —~2-[i} mg-w%
7/ j\ ° ”
by T g(“}f)'w% en
= 16 Aj_YL.léi &i’
s TTE 3

With solution of the matrix of equation 52, the peel stresses ¢ in
the midplane of the adhesive layer are known.

Now the shearing stresses
can also be calculated from equation 42. This equation is first written
with equations 45 to 47 and with abbreviations

AL = ko A+oo (54)
El "‘H_z
| A (55)
o= A (2) 55
in the described form
_ e } o | L e
2_:V _ li t,”I N ,{,(_-l;‘t - ,U_/‘Lse« (56)

The complete solution of this equation is composed of both a {lh
special solution ?i of the inhomogeneous equation and of the general

solution ?h of the homogeneous remainder of the equation. It is:
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il

z T, + T, (57)

A solution of the inhomogeneous equation is easily recognized in the
form:

L= K ixA-cm,m Ko doeal T o
+ﬁ3[}<3.< 2953 +M}z nmlz) +K{Ml1w}\1 Eah)i- mlz)]

Coefficients K, are determined by introduction of the differential
i

quotients of equation 58 into equation 56 by comparison of coefficients:

? 4T A= R A
§
U_
! | e ——
| Kz“ AL eﬁ.

a ~(%§T €, + (ut) € >

3 (R ( \ i h)
(v 26 e
\ »’-p(fs) n (»(L,.[_})

The solution of the homogeneous equation remainder in equation 56 must
also be symmetrical in Z and 1s thereby:

To= D, +Dyoealwd + D calnf

(60)
From the characteristic equation it is calculated that
2
| 9. E A
w, = \) = =4, (61)
G-Ar
: ]
L, = | 2= (62)
/S"SL
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For determination of coefficients D; in equation 60 the following” [15
limiting conditions are obtained:

1) The shearing stress transfers the outer load, therefore:

Z:"‘- e/z_
g tode = G4
-4,
or normalized
+ 4
= I (63)
T- d_z = A
- "/2
2) TFor Z = 1.
2
(6L)
_3) From equation 41 at 7 = % (see also fourth limiting condition
for a)
2 y
\CL./ - /5"- GL tL‘I’ = él @_;
& EL s E
or after normalization
) R
= = H
T
W, b*3¥1

(65)

After satisfying these limiting conditions by the complete solution
of equation 57 the following system of equations for D.i is obtained:

11 B2 813 D, 214
| %21 822 B3] .| Do = 85, (66)
0 0 333 D3 a34

with the coefficients:
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e, = A
| L ik @
Qe T e (67.1)
R S =
\ G = ol WA o o
ﬁ T2 Lo V2R Lo Ay
: \&74q = A- L-\-‘,_ M)-}j K" -l-’)‘i [M%_ Kl + )«-j eleL-iv/\/w\.i K3
a, = 4
A4
& = I Ya
29 2 (67.2)
ﬁ &13 = CJV‘\J\ = e
- _ 14 A, 1. A, 4. Ay. e & WY .
\&2“ [14 el & K,\ + }‘18M7‘ ‘L(L+ i‘ls(f‘/&l\i& FW_ZB + Al f%%‘,«) K '
4 - - . .
__Es-(ﬁmz}f.(fn)f -—M%}/\,‘M%ﬁ,)}(h] .
r& = O
34
a3i = O

2
— N Nk B
@33 = COLCA 5?) /I/w.l\i
1

— @y _ _ %ﬁ N
\QL“ Y [(4 li} Mok

+-(€mL%}JWM%B..

:

After solution of this system of equations the shearing stresses

are also known and there is still only the unequal factor @

stress to be calculated from equation 35.
duction of equation 57 there is, finally:

r of the peel

After normalization and intro-

3 .
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+ K ek L ead T+ K Lokl E nia Asi)f (68)

Thé results of a first sefies of numerical calculation are shown in
Figures 3 to 71.

These calculations with respect to distribution of shearing stress
over the length of the seam yield only slight deviations from the ap-
proximation repeated in Section 4.1 (Refs. 3, 4, 5). The stress in-
crease factor, especially in long Jjoints, remains somewhat below the
theoretical value because the shearing stress maximum is set back slight-
ly from the end of the bond. At the bond end the shearing stress in the
adhesive zone 1s zero.

In addition to shearing stresses, there are also, however, peel
stresses of such notable magnitude that dimensioning of bonds to shear
is of less importance than dimensioning with respect to peel. The
greatest peel stresses occur in a quite narrow, almost punctiform region,
at the ends of the bond (Point a in Figure 2a).

A comparison of calculated results in Figure 8 with photostress in-
vestigations of Stier (Ref. 7) supports the calculation of a double-
bonded Joint very well.

Section 5. Summary

An investigation of stress distribution in an adhesive layer of
overlap joints of shear-loaded joint parts for sheet connections to spar
webs or torsion pipes leads to similar relationships, as they have long
been recognized as approximations for tension-loaded overlap Joints.

The quality grade of these joints increases with adhesive strength and
with layer thickness and decreases with respect to the modulus of elas-
ticlty or modulus of slide of the adhesive.

For symmetrical tension-loaded double-bonded Jjoints calculations
are made with an expanded formula that fulfills the limiting conditions

lFor the numerical working out of the calculations the Fa. Zuse KG

kindly placed at our disposal in its Hamburg computer center a type Z23
computer. For his collaboration in the programming in Alcorette code,

I am grateful to Dr. Kunsemuller.

\r ” f’
n DAL MDY

Q. = z %L /é_gl_(bg. Q?1'M wE ¥ 33-(43i-'%~i\w4-£ + K4M)‘4i +ki' M):.i
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